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NATIONAL AERONAUTICS AND SPACE AI_INISTRATION

TECHNICAL NOTE D-996

AN ANALYTICAL TREND STUDY OF PROPELLER WHIRL INSTABILITY

By John L. Sewall

SUMMARY

This paper reports the results of an analytical trend study that

extends the work done by Reed and Bland in NASA Technical Note D-659

and Houbolt and Reed in Institute Aerospace Science Paper No. 61-34 on

the precessional instability of a simulated engine-propeller configura-

tion. Primary attention is given to the applications of simplified

linear equations which are derived and which define the borderline con-

ditions between stable and unstable motion in terms of damping coeffi-

cients in pitch and yaw. The equations as derived apply to the case of

separate elastic centers in pitch and yaw, and the results of some studies

are included to show the effects of separate elastic centers. For the

ease of the common elastic center, the paper confirms the results reported

in the two papers mentioned previously as to stiffness, damping, elastic-

center location, and mass- or inertla-density ratio over a broader range

of these parameters than was previously considered. The present study

also includes the effects of polar-to-pitch (or polar-to-yaw) moment-of-

inertia ratio and the effects of aerodynamic forces on whirl frequency

at extreme values of yaw-to-pitch frequency ratio. The occurrence of

engine-propeller divergence at speeds less than the critical whirl speed

is shown to be unlikely unless the system becomes very weak in one direc-

tion (that is, pitch or yaw) relative to the other. The effects of the

significant whirl parameters are shown in various figures which summarize

the analytical trends.

INTRODUCTION

For most piston engines presently in service, vibrations due to

engine operation are isolated, insofar as possible, by sets of spring-

mountings equally spaced in a ring encircling the engine in the manner

recommended by Taylor and Browne in reference i. In analyzing the dynam-

ics of this system, these writers recognized that an instability could

occur due to the interaction between gyroscopic a_d aerodynamic forces

and moments acting on the engine-propeller confi_51ration with the pro-

peller spinning. This instability, which has come to be known as pro-

peller whirl, is characterized by a wobbling motion of the propeller

shaft with the propeller hub describing, in general, an elliptical path.
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Power plants with spring-mounting systems similar to that described in
reference I have apparently had sufficient margins in spring stiffness
and damping to be free of this whirl instability within their respective
ranges of operation. Consequently, propeller whirl has not been regarded
as a particularly critical aircraft dynamics problem.

However, with the introduction of radically different engine
mountings, increased engine-power-to-engine-weight ratio, increased vibra-
tion isolation requirements, and with the continued use of long overhung
nacelles, this instability is once again of interest for such propeller-
driven aircraft. Recent work on the problem is reported in references 2
and 3 which deal with simplified representations of the engine-propeller
system and provide an understanding of the basic nature of the problem.
Effects of the wing are not included, and the motion is described by two
degrees of freedom in pitch and yaw with aerodynamic forces and moments
based either on the propeller coefficients of Ribner (ref. 4) or on the
coefficients derived in reference 3- Both references 2 and 3 are mainly
concerned with solutions of the stability equation defining the border-
line conditions between dampedand undampedmotions but also give atten-
tion to the transient response of the system obtained by solutions of
the equations of motion on an analog computer.

The purpose of the present paper is to report an analytical trend
study covering the ranges of dimensionless parameters listed in table I,
which extends the ranges covered in references 2 and 3. The sameideal-
ized representation as that of reference 2 is considered, although the
solution of the stability equation is presented in somewhatdifferent
form, and provision is madefor separate elastic centers in pitch and
yaw. Somecalculations were madeto show the effects of separate elastic
centers, but except for these cases, all the analytical trends presented
are based on a commonelastic center as was done in references 2 and 3-
Dampingin the structure is represented as viscous damping, and linear
relations between this type of damping and total damping are derived from
the stability equation. These linear relations are used to show the
effects of such dimensionless parameters as yaw-to-pitch frequency ratio,
inertia-density ratio, and advance ratio. Consideration is also given,
as in reference 3, to the static aeroelastic phenomenonof divergence
for this idealized engine-propeller combination.

SYMBOLS

aI. •. a4_
Fb1. .b

b

coefficients of differential equations of motion, defined

by equation (1)

blade width, ft (See fig. 5.)
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c0. • .c3

Cmq

CY e

Cy_

Cyq

D

e

e_

E

F(s)

fl

fe

G

IX

aerodynamic and damping contributions to whirl frequency

(eq. (8a)), defined by equations (8b) and (8c)

total damping coefficient in nth whirl mode, sec -1

coefficients of equation (2)

pitching-moment derivative with respect to yaw

pltching-moment derivative with respect to pitching velocity

side-force derivative with respect to pitch (not actually

given in ref. 4; approximated in refs. 2 and 3)

side-force derivative with respect to yaw

side-force derivative with respect to pitching velocity

propeller diameter, ft

moment arm from propeller plane to effective elastic center in

pitch, ft

moment arm from propeller plane to effective elastic center in

yaw, ft

coefficient of divergence equation (eq. (ll))

quartic stability equation (eq. (2))

circular propeller whirl frequency in retrograde mode,

_#2_, cps

uncoupled circular frequency in pitch, _e/2_, cps

viscous damping coefficients in yaw az_d pitch, representing

damping in structure and defined by c/c c where c is

usual viscous damping coefficient (proportional to velocity)

and cc is critical damping coefficient

coefficient of divergence equation (eq. (ll))

mass polar moment of inertia of propeller about axis of

rotation_ ft-lb-sec 2
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I Z'

J

k8

K1

KO

Ke,K3

mass moment of inertia of engine-propeller combination in

pitch about elastic center in pitch, ft-lb-sec 2

mass moment of inertia of englne-propeller combination in

yaw about elastic center in yaw, ft-lb-sec 2

advance ratio, V/nD

spring constant of system in pitch, ft-lb/radlan

spring constant of system in yaw, ft-lb/radian

intercept of linear equation (7), defined by equation (To)

slope of linear equation (7), defined by equation (7a)

quantities defined by equations (7c) and (7d)

P1, P2, P3' """

n propeller rotational speed, rps

S

V

T C

X, Y, Z

8

aerodynamic quantities defined following equation (Tb)

divergence parameter, see equation (ii),

variable in Laplace transform

airstream velocity, ft/sec

Thrust
thrust coefficient,

ov2 

coordinate system (see fig. l)

pitch angle, radians

blade angle, deg (see fig. 5)

inertia-density ratio , where numerator is mass moment
Iy

of inertia of a cylinder of air of length D about propeller
axis of rotation
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ao8

D

%

Iy

inertia-density ratio _pD4e/32 , where the denominator is mass

moment of inertia of a cylinder of air of length e about

propeller axis of rotation

propeller rotational speed, radians/sec

frequency of nth precessional mode of propeller shaft (or

simply, propeller whirl frequency), radians/sec

uncoupled frequency in pitch, _y, radians/sec

air density, ib-sec2/ft 4

yaw angle, radians

uncoupled frequency in yaw, I_' radians/sec

Subscripts:

0 denotes zero lift condition on propeller blade (See fig. 5.)

0.75R

peller radius (See fig. 5.)

D divergence

Dots over symbols indicate derivatives with respect to time.

denote quantities associated with the elastic center in yaw.

denotes property of propeller blade at three-fourths of pro-

Primes

ANALYSIS

Development of Stability Equations

The dynamic behavior of an elastically mounted propeller-engine

system in an airstream is represented by a two-degree-of-freedom system

in pitch and yaw shown in figure 1. The equations of motion are con-

venientlywritten in the form:

+ al@ + a28 + as_ - a4_ = 0

+bl +b2 - bs@ +b4e :0



where the coefficients are defined as follows:

aI = 2{e_ e _pD4V #C_ 2 )

a 2 = _e 2 _P D2eV2
- 8Iy Cy,

IX_ _pD3eV(_ Cm¢ + Cyq e@ e Cye)
a3 -- I7 + 81y 2 e D

8Iy

_pDeev2Cy, (e$

IY I_Ty_ _pDSeV IC e_Cyq e_e IIb3=-- +
Iz' _VY m@ + _ 5 _ _ Cy8

= _IY,.__C e Cye)
b4 _pDSV 2 e¢

(i)
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It is noted here that the derivation of the foregoing equations may

be obtained in the same manner as that given in reference 2 except for

the introduction of the ratios Iy/Iz'_ and e,/eT, because of the exist-
ence of separate elastic centers in pitch and yaw. For this system the

effective angles of attack given by equation (ll) of reference 2 may be

rewritten as

e@
e =e

v

and

e¢¢
_=,---

V
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where the barred symbols denote effective angles of pitch and yaw. The

corresponding aerodynamic moments in pitch My and yaw M z become

My = My, p - eF z

M Z' = MZ, p + e_Fy

rather than equations (13) of reference 2, where My, p and MZ, p are

the aerodynamic moments about pitch and yaw axes in the propeller plane

and Fz and Fy are vertical and side forces, respectively, acting in

the propeller plane. The existence of separate elastic centers also

destroys the inertial symmetry that is usually assumed for the case of

the common elastic center by introducing the moment of inertia in yaw

not equal to the moment of inertia in pitch Iy. The stability of the

system is determined from the roots of the following characteristic

equation which may be conveniently obtained by applying the Laplace

transformation (see ref. 5, for example):

IZ '

F(s) = s4 + c3s5 + c2s2 + ClS + c0 = 0 (2)

whe re

c 5 = aI + bI

c2 = a2 + b2 + alb I + asb 3

cI = alb 2 + a2b I - a4b 5 - a3b 4

cO = a2b 2 + a4b 4
J

(3)

Within the range of parameters for the physical system considered in

this study, the roots of equation (2) have been found to occur in the

complex conjugate pairs

(n = l, 2)

where Bn is a total damping coefficient and _n the frequency of

oscillation. Positive values of Bn indicate an undamped or unstable

condition. Two solutions are found for the whirl instability; B1 and

_l are found to correspond to wobbling motions of the propeller shaft

around an elliptical path that is traversed in the opposite sense to the
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propeller rotation direction whereas B2 and _2 correspond to a

wobbling direction that is the same as the propeller rotation.

Exact solutions of equation (2) have been obtained for various com-

binations of parameters. Values of Bn for the lowest mode have been

obtained as a function of _0 and _,, and typical plots are shown in

figure 2 for the special case of e, = e and Iy = Iz. The consistently

linear trends appearing in the figure suggest the existence of a linear

relation between total damping and the damping in the structure. Such

a relation may be obtained by the following considerations: Equation (2)

is assumed in the factored form

L

1

5
7
5

corresponding to the complex conjugate roots noted previously. By equating

like coefficients in this expression with those in equation (2) and

neglecting all terms of Bn of higher order than the firs% it is found

that

where the whirl frequency

(4)

_n is given by

The negative sign preceding the radical in equation (5) gives _l and

the positive sign, _2" For all cases studied in this paper and in

references 2 and 3_ the lower whirl mode (or retrograde mode) corre-

sponding to B1 and _l has been found to be the critical mode; that

is, it occurs at the lowest airplane forward speed.

For the case of neutral stability_ defining the borderline condi-

tion between damped and undamped motion, BI = 0_ and hence,

- _12c3 = 0 (6)C 1

Substitution in equations (5) and (6) for the c and a values from

equations (1) and (3) gives the following linear relations between the

damping coefficients in pitch and yaw for neutral stability:



where

2q, = -%(2_o) + K__

½
K0 =_

coO

(7)

(7a)

Kl=

ID _ J

p. e co8 _t

_ K3
m8

Ip Iy
IK2 + -- PI'K3 +

Iz '

Iy ffl
2Ix_ p

IZ' _e _ Y_£

2 fl J P2P3 + P2 P3

fU_l_2 1 fl Iy

(Tb)

(7c)

The quantities

defined by

2

a)l]

PI' P2' P3' etc., are propeller aerodynamic terms

(7a)

e 2

PI = Cmq - 2(_) Cy_

e

P2 : Cm_ - _ Cye

P3 = e_ Cm@ + Cyq e_ e
e 2 e D CYe

e 2

PI' Cmq 2(7)(e 2D]= _ -j Cy_
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e¢ e
P2' = Cm_ e D CYe

e¢ Cyq e_ e

P3' = Cm_ + T 2 e D CYe

The characteristics of these propeller aerodynamic terms will be dis-

cussed subsequently. The term (_lh 2 is given by

\c-oe/

/ix_ h2 Iy a_
--+ 4_ --+A 1V_e/ _z' e_ _e

(i_1_iy _ +A
+

2

where

A1 = 1 _ J ( _ J Cy¢(l + e Y_Z' - _" _ -- P1 Iy ,)-- PI+ 2_ e IZ,

(8a)

Iy [Ixn 2 _ J ,]L1_ J_f_l_l,+_ (_3+_3')+ bb (8b)i#

Ao= F _ ,l,\_e_ e Iz' + _ ee Y_ e IZ, + e-_

(In the application of eqs. (7) and (8), it develops that simplified

forms can be used, as indicated later in eqs. (13).) If structural

damping as considered in reference 2 is assumed in place of viscous

damping as assumed herein, the relations ge = 2_e and g_ = ,

based on equation (27) of reference 2, are introduced into equations (7).
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For the special case of e_ = e and Iy = IZ', equations (7) are
plotted in figure 5 for the three cases considered in figure 2. In cal-
culating a_l/ _, the terms involving _e and _ in equations (8a)
and (8b) were neglected. The circular points represent values of _0

and _ crossplotted from figure 2 for B1 = 0 in application of equa-
tion (2). These points are included in order to check the adequacy of
equations (7) for determining the region of instability, which is the area
below the line and bounded by the ordinate and abscissa in a given case.
Also comparedin figure 5 are the frequency ratios _l/a_ calculated by

equations (2) and (8) for the three values of _/_8' Equations (7) are

seen to predict somewhatsteeper slopes and larger values of 2_@ than
does equation (2) and may accordingly be regarded as conservative in the
sense that the regions of instability are slightly larger than those of
equation (2). Since these differences are small, equations (7) may there-
fore be considered satisfactory for defining the borderline condition
between stability and instability for the range of parameters covered in
the present study.

Conditions for Eliminating Regions of Instability

Oneway for an engine-propeller combination to be free from propel-
ler whirl instability is for the triangular area of instability shown
in figure 5 to be eliminated completely. This may be done by simply

setting the intercept K 1 = 0 in equation (7), so that the linear neu-

tral stability boundary becomes a line through the origin, and the fol-

lowing quadratic equation in _ is obtained:
D
we

=0

(9a)
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2
The quantity in this equation is obtained from equation (8a) con-

sidered without the aerodynamic and damping terms; these additional terms
are shownin reference 2 to have a negligible effect on the precessional
frequency _l for a system with a commonelastic center. Results of
sample calculations with equation (9a) are shownin figure 4. As may be
seen, satisfactory solutions can be obtained by simply neglecting the

quadratic term in V as long as the gyroscopic parameter Vl_tl--_ / is

e¢
not too small and -@- is not too large.

For a completely symmetrical system in which _---= i and
_8

e_ Iy
--- = I, neglect of the quadratic term in equation (9a) and introduc-
e Iz '

tion of equations (8) with A0 = AI = 0 leads to the following simple

stability criterion for a system to be free of propeller whirl instability:

P2v <l 4  Ix 12
2

(gb)

where it may be noted that the aerodynamic terms are on the left-hand

side of the equation, and the right-hand side contains only mechanical

Ixn
terms. For small values of -- equation (9b) reduces to equation (26)

Iy_e

of reference 2 when the damping coefficient _02 equals zero.

Divergence Equation

The conditions for neutral stability with respect to static diver-

gence is obtained from equation (2) by letting s = 0 so that

c0 = a2b 2 + a4b 4 = 0 (i0)

From the definitions of a2, b2, a4, and b 4 given in equation (i) the

following quadratic equation may be obtained:

PD4 - %2E + G : o (ii)
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where the divergence parameter
JD 2

i D _pD 5

e 52Iy

with

L

i

5

7

and

E

e_ Cy_ +
D e IZ j

IY[# 'e- C 2

S

-I c2 liy p2p2,
IZ, e

The application of e_ation (ii) is discussed in the following

section along with the dynamic whirl equations. However, at this point,

it may be worth noting that, when _ i and e, Iy= -- = _ = l, equa-
te e Iz '

tion (i0) becomes

a22 + a42 = 0

which obviously has no real roots unless a2 and a4 are both zero.

However, the condition that a4 be zero (except for the trivial case

of PD = 0) when combined with a2 = 0 yields

CYe (m)
PD2 : c_cy¢

It should be noted in this equation that for each value of J, there is

e N
Just one value of _e, given by _ = , for which divergence can occur.C

Ye
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Note also that if Cy8 is assumed to be zero, a4 cannot be zero unless

Cm_ is zero, which in turn requires J to be zero. Thus, for a com-

pletely symmetrical engine-propeller combination, divergence based

solely on Ribner coefficients (ref. 4) cannot occur.

APPLICATION OF WHIRL STABILITY AND DIVERGENCE EQUATIONS

With the exception of the results given in figure 2, most of the

propeller-whirl trends presented in this paper were obtained by use of

equations (7) for the ranges of dimensionless parameters listed in

table I for the case of the common elastic center = _ = . A

Iz '

few calculations were performed for the case of separate elastic centers

e$ Iy
using the tabulated values of -- and -- which were selected arbi-

e IZ,

trarily. The choice of the remaining parameters in table I was largely

influenced by a compilation of available (though, unfortunately, incom-

plete) information on pertinent engine-propeller characteristics on a

number of piston-engine and turbopropeller power plants in service over

a number of years. Most of the propeller aerodynamic coefficients used

in these calculations are based on the blade characteristics of the same

propeller used in references 2 and 3 and currently in service on com-

mercial air transports. These blade characteristics are reproduced from

reference 2 in figure 5(a), and the propeller is designated as propel-

ler A. Some calculations based on the blade characteristics of propel-

ler B, also shown in figure 5, were performed. These characteristics

apply to a propeller that was widely used from 1945 to 1950. The ranges

of propeller advance ratio J and blade angle at the 314 radius C o.75R)
are shown in figure 5(b) for both propellers for the windmilling (or

nonthrusting) condition.

The propeller aerodynamic coefficients based on the propeller

characteristics shown in figures 5(a) and 5(b) are listed in table II.

The side-force coefficient with respect to pitch Cy8 , which is not

given by Ribner in reference 4 but is approximated in references 2

and 3, was omitted in all but a few calculations concerned with the case

of the separate elastic centers, with divergence, and for the parametric

relation for systems free of propeller whirl, given by equation (ga).

Values of CYe given in table II were obtained from reference 2 by

following the approximate scheme given therein.

L

1

5

7

5
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Before presenting analytical trends in propeller whirl boundaries,

it is worth noting the following acceptable approximations to the slope

K0 and intercept K1 in equations (7) which arise from the negligible

effect of propeller aerodynamic coefficients on the whirl frequency:

= \<-°el - (13a)

El _

_8) J + IZ--T PI' - \_o 8)j

h
Iy Ix_ _ J _t

+ (P2 + P2'J (13b)
IZ ' llgo8 _8 _

where

+ iz,tiy_o8 ) - + (_) + Iz'\Iy_ooJ j

(13c)

Cases in which the effect of propeller aerodynamics on whirl frequency

is not negligible are illustrated in figure 6 for extreme values of

a_m and -.e However, even for these cases the corresponding effects on

we D
the neutral stability boundaries are still small.

Parametric Whirl Instability Trends

In determining the effects of the various dimensionless parameters

on propeller whirl, the condition of symmetry in damping has been chosen
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in most cases. A few cases have been examined for extreme unsymmetrical

conditions. The trends for the system with a common elastic center are

presented first, except as noted below for the effect of _ on whirl

frequency.

Effect of rotational-to-pltch frequency ratio --.- Initial con-
w e

sideration is given to -- because it relates the propeller rotational
we

speed to engine-nacelle stiffness and is used as a basis for evaluating

other parameters. The effect of this parameter on whirl frequency is

shown in different forms in references 2 and 3. In the present paper

IX I_is combined with the inertia ratios _yy and into an angular_e

a \
momentum ratio VIT-_'II---_---_'and the effect of this gyroscopic parameter

on the natural whirl frequency is shown in figure 7 for both forward

and retrograde whirl modes of the system for the general case of sepa-

rate elastic centers in pitch and yaw.

Figure 8 is a stability chart in which the damping coefficient 2_

is shown as a function of J for various values of _. Four values

w e

of _ 1are shown. The parameters held constant are -- = 0.00978,
w e

IX= e
Iy 0.1184, _ = 0.235. The values selected for these parameters are

considered to be in the center of the range of values of current interest.

Variations in each of these values in turn are studied for fixed values

of the remaining parameters, and these variations are made with _ = 1
w e

(the solid curves labeled a, b, c, and d).

Figure 8 shows that the regions of instability increase with

increasing _ and with increasing J. Negative values of 2_ in fig-

ure 8 indicate conditions completely free of propeller whirl instability.

It is evident that _ can be low enough for the system to be stable
we

throughout the range of values of J.

Effect of yaw-to-pltch frequency ratio _.- This is one of the

fixed parameters in figures 9 to ll. An indication of the effect of
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frequency ratio itself with other parameters held fixed can be obtained

by examination of figure 8. As -_ is increased, the regions of insta-

bility defined by frequency ratios less than 1 tend to become somewhat

larger than the regions at frequency ratio 1. For -_ _ 2.5 the insta-

bility region at _ = 1.0 is greater than the regions for the other
w e

_ 2.5 a reversal of this trend is indi-
frequency ratios, but for we =

cared for _---_ 1. Further consideration of frequency-ratio effect is
we

discussed later in connection with divergence.

1
Effect of inertia-density ratio -.- The effect of inertia-density

ratio is shown in figure 9. The curves labeled a, b, c, and d are the

same as curves a, b_ c_ and d of figure 8. The increasing region of

instability with larger values of _ indicates that for a given engine-

propeller combination more structural damping is required to stabilize

the system at lower altitudes than at higher altitudes. It is also

evident that an undamped system is essentially insensitive to inertia-

density ratio, and a small amount of structural damping has a strong

stabilizing effect at low values of inertia-density ratio. These effects

are similar to those found in reference 3 in which density was part of

a mass-density ratio based on the mass of the propeller.

Iv

Effect of polar-to-pltch moment-of-inertia ratio _y.- Figure i0

shows effects of IX about the same curves a, b, c, and d, on the region
Iy'

of instability, and it is evident that more damping is required for sta-

bility as the magnitude of IX increases. An increase in inertia ratio
Iy

may be visualized as being caused by shortening the engine for a given

propeller, or using a heavier propeller on a given engine.

e
Effect of _.- This parameter relates the propeller diameter and

the moment arm between the plane of the propeller and the effective

elastic center of the system. Figure ll shows that the smaller the
e

value of _, the greater the Amount of structural damping required for

stability. This result is essentially the same as that found in refer-
e

ences 2 and 3. Decreasing _ for a given propeller is equivalent to
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moving the elastic center closer to the propeller plane or to increasing

the propeller diameter for a fixed elastic center location. With less

e e

damping required as _ is raised, it is evident that _ can be high

enough for the system to be free from propeller whirl throughout the

J-range. It is shown later, however, that the extent to which e can

be raised actually is limited by the divergence boundary.

It should be noted that the effects shown in figure ii are aero-
e

dynamic effects, since it has been assumed that _ can be changed with-

out affecting either the polar or pitching moments of inertia of the

system. However, when the inertial change was accounted for (due to

changing the moment arm e), the regions of instability were only

slightly enlarged from those shown in figure ll; thus the dominance of
e

the aerodynamic effect of varying _ is indicated.

Effect of thrust coefficient.- Most of the trends presented in this

paper apply to the windmilling case, that is, the case of zero thrust

(Tc = 0), and the work of reference 2 has shown thrust to have a minor

effect on the propeller-whlrl neutral stability boundaries. Brief

attention was also given to this matter in the present study, and some

results of varying Tc from -0. O1 to 0.036 are shown as a function of

in figure 12. Variation of thrust coefficient over this range either
we

positive or negative is seen to have a small effect on the region of

instability.

Analytical trends for a different propeller.- As previously noted,

most of the work reported in this paper is based on the blade character-

istics and advance ratios for propeller A as given in figures 5(a) and

5(b). Neutral stability boundaries and whirl frequencies based on the

blade characteristics and advance ratios for propeller B are compared in

figure 13 with stability boundaries and whirl frequencies for propeller A.

The results of the calculations show a somewhat smaller region of insta-

bility for propeller B than for propeller A at a low value of _ and
w e

as m increases, the sizes of the instability regions for the two pro-
_e

pellers become indistinguishable. The distinction between the two pro-

pellers appears to be even less significant insofar as whirl frequency
(shown in ratio form in the lower part of the figure) is concerned.

Effects of unsymmetrical damping.- Up to this point only the case

of symmetrical damping has been considered (that is, _ = _e as pre-

viously noted). When the damping coefficients in pitch and yaw are

unequal, more damping in the mode having the lower stiffness is required

for neutral stability #that is, more damping in pitch is required for
\
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i

5
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< i, and conversely, more damping in yaw than in pitch is required

for _ > 1.0']. This situation is evident in figure 3 and is also shown

w e /

in figure 14 for the full J-range of propeller A for the extreme cases

in which the damping in first one degree of freedom and then the other is

assumed to be zero. The fixed parameters for these curves are the same

as those in figure 8, and the reference curves b, c, and d for figure 8

are reproduced in figure 14. As may be seen, the frequency ratio does

not have to be very far from unity for the damping required for neutral

stability to be quite large when the damping in one of the modes is com-

pletely eliminated. This result is somewhat similar to that found in

reference 2 for less extreme damping ratios.

Effect of separate elastic centers in pitch and yaw.- The parametric

whirl trends presented up to this point have been based on a common

elastic center. The results of some calculations for the case of sepa-

rate elastic centers in pitch and yaw are shown in figure 15. The moment

arm ratio e_ was arbitrarily varied from 0.2 to 2.0, and for each value
e

of this ratio chosen, a corresponding value of the inertia ratio IZ'
Iy

was determined by using inertial characteristics representative of an

engine-propeller system currently operational. The solid curves, which

were determined by use of the approximate relations given by equa-

e_ IZ' b'tions (13) for .... i are designated by a', , and so forth,
e Iy

to denote the fact that they are essentially the reference curves a, b,

c, and d but are based on the nonzero values of Cye given in table II.

A comparison of the solid with the dashed curves shows an increase in

the region of instability for e_ < 1 and a decrease in the region of
e

instability for e_ > 1 as _----increases.
e _8

Analytical Divergence Trends and Comparison With Whirl Trends

Divergence boundaries calculated by use of equations (ii) and (12)

are presented in figures 16 to 18 and are compared with whirl trends in

figure 19.

VD
Divergence.- In figure 16 the divergence parameter PD = D

we
e

is shown as a function of _ for three advance ratios and a wide range



2O

f _2
of stiffness ratios

___°_) " The region of instability lies within the

semiclosed curves for all stiffness ratios, the region being largest for

extreme stiffness ratios and decreasing as the stiffness ratio approaches

one. At stiffness ratios not far from i the curves close, and the diver-

gence region becomes a narrow elongated band bounded by an upper as well

°(as a lower positive value of _ as, for example, in the case of

2 inthe t)
_.,__ = 0.9 lower right plo . At a stiffness ratio of 1 for the
_ J0

case of the common elastic center, this region shrinks to a point which,

as previously noted, is determined by equatio_ (12) for each value of J

and corresponding nonzero value of the lift-lag coefficient Cy_.

Increasing J results in an increase in the region of instability and

extends it to lower values of _ this change is equivalent to shortening

the distance between the propeller plane and the elastic center. It may

also be noted in figure 16 that the effect of a nonzero value of Cy_,

compared with that for Cy0 = 0, is to increase the size of the diver-

gence region by an amount that increases as the stiffness ratio gets

closer to i. This effect is opposite to that found for propeller whirl

in reference 3- In other words, the inclusion of the lift-lag term in

the divergence and whirl equations has the effect of destabilizing an

engine-propeller combination in divergence and stabilizing it in whirl.

The divergence behavior at a stiffness ratio of i of both propellers

considered in this study is shown for the case of the common elastic

center in figure 17, which is a plot of equation (12). As may be seen,

the divergence speed parameter for propeller B is somewhat higher than
that for propeller A.

For the case of separate elastic centers the regions of divergence

instability have the same general shapes as those shown in figure 16.
e

For zero stiffness ratio, the values of _ where PD is a maximum shift

e, e_fr
to the right for --< i and to the left for --_ > i, and the maximum

e e

value of PD decreases for _ < I and increases for e_ > i. At a
e e

stiffness ratio of i, divergence occurs at more than one value of
D

as is shown in figure 18, which also shows the region of divergence

instability to lie within semiclosed regions for e_ < i and within
e

completely closed regions for e_ > 1. Moreover, for e_ > 1 divergence
e e

L
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occurs at values of PD that are somewhat lower than the single value

e@
of PD at -@- = i. At other stiffness ratios, divergence regions are

completely closed between a range of stiffness ratios that is small for

e_!s e_
low values of e and increases rapidly as _- increases. (See, for

example, table III for J = 2.65.) Outside of this range of stiffness

ratios the divergence regions are semiclosed as in figures 16 and 18.

Comparison between divergence and whirl boundaries.- Whirl boundaries

are compared with divergence boundaries for the case of the common elastic

center in figure 19 for a wide range of frequency ratios and two widely

separated values of e. The divergence boundaries are seen to be well
D

above the whirl boundaries except at low frequency ratios where both

boundaries intersect. The whirl boundaries apply to both damped and

undamped systems and the lift-lag term Cy8 has been omitted from the

divergence as well as the whirl calculations. The figure shows diver-

gence rather than whirl to be critical for a system considerably weak

in yaw relative to pitch (corresponding to low _), the divergence

region extending further into the whirl region as _ increases.

Remarks on Effect of Viscous Damping

The stabilizing effect of viscous damping on propeller whirl has

been considered both in this paper and in references 2 and 3 along with

the effects of other significant parameters. The whirl trends shown in

figure 19 for various nonzero damping coefficients are considered worthy
e

of added observations with respect to frequency ratio and _. The trends

indicate that for a given e the effect of damping is about the same at

all frequency ratios and becomes greater for -- _ 1.0 as the distance

between the propeller plane and effective elastic center decreases (that

e decreases). 0nly at the low frequency ratios near the diver-is, as

gence boundaries does the damping effect tend to diminish, as indicated

by the convergent tendencies both of the neutral stability boundaries

in the upper part of the figure, and particularly, of the frequency trends

in the lower part of the figure. Note also that the damping required to

e
stabilize the system with lower _ is roughly more than twice as much
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e

as that required to the system with higher _ at nearly all frequency

e

ratios m. This behavior is consistent with the effect of _ and_e

damping noted earlier for a frequency ratio of 1.

CONCLUDING R_4ARKS

An analytical trend study that extends previous works by Reed,

Bland, and Houbolt (NASA TN D-659 and IAS Paper No. 61-34) on propeller

whirl instability is reported herein. Most of the present effort is

concerned with applications of simple linear equations defining the

borderline conditions between stable and unstable motion in terms of

viscous damping coefficients in pitch and yaw. Results of these appli-

cations are shown for wide ranges of the significant whirl parameters

in a number of figures summarizing the analytical trends. These results

confirm the results of previous studies in indicating the strong depend-

ence of propeller whirl instability on stiffness, damping, and elastic

center (or pivot location) of simplified engine-propeller combinations

cantilevered at their elastic centers. In addition, the following con-

clusions appear to be Justified:

i. Increasing the polar-to-pitch (or yaw) moment-of-inertia ratio

increases the region of propeller whirl instability.

2. Aerodynamic effects on the frequency of propeller whirl insta-

bility are found to have a small effect on the neutral stability bound-

aries even at extreme values of yaw-to-pltch frequency ratio. The aero-

dynamic effects are also small when the distance between the propeller

plane and the effective elastic center is large relative to the propel-
ler diameter.

3. For an engine-propeller system with different elastic centers

in pitch and yaw, the region of whirl instability tends to decrease

when the distance from the propeller plane to the most rearward elastic

center is increased. Conversely, the instability region tends to increase

as the distance from the propeller plane to the most forward elastic
center decreases.

4. The occurrence of engine-propeller divergence at speeds less

than the critical whirl speed is unlikely unless the system becomes very

weak in one direction (that is, pitch or yaw) relative to another. If

the slde-force coefficient with respect to pitch angle is omitted in

the calculations, divergence cannot occur for a completely symmetrical
system (that is, one for which stiffnesses as well as moments of inertia

L

1

5

7

5
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are respectively equal in the pitch and yaw directions_ and the system

has a common elastic center).

5. Whereas an engine-propeller system with a common elastic center

and equal stiffnesses in pitch and yaw diverges for each advance ratio

at Just one value of the ratio of the distance between the propeller

plane and the elastic center to the propeller diameter, the system with

separate elastic centers diverges over a wide range of this ratio for

each advance ratio.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Air Force Base, Va., December 15, 1961.
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TABLE I.- RANGES OF DIMENSIONLESS PROPELLER WHIRL PARAMETERS

COVERED IN INVESTIGATION

i
........................... 0.0036 to 0.04

-rx
Iy .......................... 0 to O. 33

e

_ for whirl ...................... O. 125 to 0.8545

e for divergence ................... 0 to 3.52
D

m0 for whirl ..................... 0.1 to 2.0
cue

_ (each value fixed for range of J; for example,
me

see fig. 8) ..................... 1.26 to 3-15

_---(for fixed J; for whirl solutions shown in
we

fig. 19) ....................... Variable to i0

(seefig. 15) ................... 0,2 to 2.o
e

--Iz--(see fig. 15) ................... 1.0 to 1.605
Iy

Tc ........................... O.O1 to O.036
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TABLE III.- RANGES OF STIFFNESS RATIO _e WHICH

INCLUDE CLOSED REGIONS OF DIVERGENCE INSTABILITY

FOR A SYSTEM WITH SEPARATE ELASTIC CENTERS

IN PITCH AND YAW

[J = 2.65; propeller A]

e

0.2

.5

1.0

1.5

2.0

IZ '

Iy

i.385

i. 15

al. 0

i. 151

i.605

Lowe r

limit

O. i00

•5oi

•692

•902

.863

Upper

limit

O.209

.628

i. 445

1.88

1.80

a IZ, Iz
= m for common elastic center.

Iy Iy
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Figure 1.- Idealized engine-propeller system. Directions indicated are

considered positive.
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from fig. 2 far Bi=O
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Figure 3.- Typical solutions of linear equation for neutral stability

e_ IZ

(eqs. (7)) of propeller A. Tc = 0; J = 2.65; CYo = O; .... i;
e Iy

IX
1 = 0 00978; e = 0.235; = 0. i184; n = 3.15.
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Equation 9(a)

w_ Equation 9(a) neglecting

quadratic term in V

Unstable

e_ Iz,

2.0, 1.605

k..n
--.4

D

1.0, 1.0

O.2, 1.585

Figure _. Propeller whirl boundaries for an undamped system (plot of

-eq. (9a)) for propeller A with Tc = O; J = 2.6_; = l;

l 0.00978; e_ = 0.235.
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Figure 7.- Gyroscopic effect on whirl mode frequencies (plot of

eq. (13c)).
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Figure 12.- Effect of thrust coefficient Tc on propeller whirl sta-

bility boundaries for propeller A with J = 2.65; Cye = O;

e@ Iz _ I IX e
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bols correspond to solid-line reference curves in figure 8.
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Figure 16.- Divergence boundaries for simplified engine-propeller com-
bination based on propeller blade characteristics for propeller A

with T c = 0 and e_ = IZ = 1.
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Figure 19.- Divergence and whirl boundaries for propeller A including

the effect of damping for a wide range of frequency ratios with

Tc = O_ J = 2.65_ Cy@ = O_ e_ Iz 1 0.00978_ IX
e = _y = i_ _ = Iy = 0.1184.
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